Jump to content

Featured Replies

Posted
Decoherence and the Appearance of a Classical World in Quantum Theory

Decoherence and the Appearance of a Classical World in Quantum Theory

by Erich Joos, H. Dieter Zeh, Claus Kiefer, Domenico J. W. Giulini, Joachim Kupsch, Ion-Olimpiu Stamatescu

Publisher Springer Science & Business Media
Published Date 2013-03-09
Page Count 496
Categories Science / Physics / Quantum Theory, Science / Physics / Mathematical & Computational, Computers / Information Technology, Science / Physics / General
Language EN
Average Rating N/A (based on N/A ratings)
Maturity Rating No Mature Content Detected
ISBN 3662053284
Book Cover When we were preparing the first edition of this book, the concept of de coherence was known only to a minority of physicists. In the meantime, a wealth of contributions has appeared in the literature - important ones as well as serious misunderstandings. The phenomenon itself is now experimen tally clearly established and theoretically well understood in principle. New fields of application, discussed in the revised book, are chaos theory, informa tion theory, quantum computers, neuroscience, primordial cosmology, some aspects of black holes and strings, and others. While the first edition arose from regular discussions between the authors, thus leading to a clear" entanglement" of their otherwise quite different chap ters, the latter have thereafter evolved more or less independently. While this may broaden the book's scope as far as applications and methods are con cerned, it may also appear confusing to the reader wherever basic assumptions and intentions differ (as they do). For this reason we have rearranged the or der of the authors: they now appear in the same order as the chapters, such that those most closely related to the "early" and most ambitious concept of decoherence are listed first. The first three authors (Joos, Zeh, Kiefer) agree with one another that decoherence (in contradistinction to the Copen hagen interpretation) allows one to eliminate primary classical concepts, thus neither relying on an axiomatic concept of observables nor on a probability interpretation of the wave function in terms of classical concepts.
More Information
  • Views 6
  • Created
  • Last Reply

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

Important Information

Terms of Use Privacy Policy Guidelines We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.