Posted March 13Mar 13 Stochastic Approximation and Recursive Algorithms and Applications Stochastic Approximation and Recursive Algorithms and Applications by Harold Kushner, G. George Yin Publisher Springer Science & Business Media Published Date 2006-05-04 Page Count 478 Categories Mathematics / Probability & Statistics / General, Computers / Artificial Intelligence / General, Mathematics / Mathematical Analysis, Mathematics / Applied, Computers / Programming / Algorithms, Mathematics / Probability & Statistics / Stochastic Processes, Mathematics / Differential Equations / General, Mathematics / Numerical Analysis Language EN Average Rating N/A (based on N/A ratings) Maturity Rating No Mature Content Detected ISBN 038721769X The basic stochastic approximation algorithms introduced by Robbins and MonroandbyKieferandWolfowitzintheearly1950shavebeenthesubject of an enormous literature, both theoretical and applied. This is due to the large number of applications and the interesting theoretical issues in the analysis of “dynamically de?ned” stochastic processes. The basic paradigm is a stochastic di?erence equation such as ? = ? + Y , where ? takes n+1 n n n n its values in some Euclidean space, Y is a random variable, and the “step n size” > 0 is small and might go to zero as n??. In its simplest form, n ? is a parameter of a system, and the random vector Y is a function of n “noise-corrupted” observations taken on the system when the parameter is set to ? . One recursively adjusts the parameter so that some goal is met n asymptotically. Thisbookisconcernedwiththequalitativeandasymptotic properties of such recursive algorithms in the diverse forms in which they arise in applications. There are analogous continuous time algorithms, but the conditions and proofs are generally very close to those for the discrete time case. The original work was motivated by the problem of ?nding a root of a continuous function g ̄(?), where the function is not known but the - perimenter is able to take “noisy” measurements at any desired value of ?. Recursive methods for root ?nding are common in classical numerical analysis, and it is reasonable to expect that appropriate stochastic analogs would also perform well. More Information
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.